2010 Konhauser Problem Fest
Solutions
Problems written by Rizvan Gelca

I. Find all complex numbers z that satisfy the equation

132+ 1|+ |22 — 3| + |z — 2| = 6.

Solution: The triangle inequality implies

13z+1|+|2z—3]+lz—2]=|3z+1|+|3—2z[+|2—z]
2[32+14+3-22+42— ;=6
For equality to hold in the triangle inequality, there should exist a
complex number w and positive real numbers T1, 79, and r3 such that
32+ 1=ruw
3—2z=rqw
2— 2z =ryw.
Substituting w from the first equation into the second we deduce that z
is a real number. In this case one has equality in the triangle inequality

if and only if z > —%, B

5 and z < 2. This means that the solution
to the given equation consists of the interval [—3, 2] on the real axis.

302

2. Find a polynomial with integer coeflicients that has the root

V24 V3 + /6.

Solution I: Set /2 + V3 + 5 = . Then z — /5 = /2 + V3, so
? — 22v/5 = 21/6. Squaring again we obtain z* — 423/5 + 2022 = 24.
It follows that (2! + 2022 — 24)* = 42°\/5, s0 28 — 4025 + 35944 —
9602 + 576 = 0, which is the desired polynomial.

Solution II: A polynomial with the given property is
[[@E£v2+v3Ly5)

where the product is taken over the 8 possible choices of the signs plus
and minus. )



3. There are n? people, each on one square of an n-by-n chesshoard. Some
of them are "infected". At each step, anyone who is infected remains
infected, and any healthy person with at least two infected neighbors
(corners do not count as neighbors) becomes infected in the next step.
Notice that if the main diagonal starts out infected, then after n — 1
steps everyone is infected.

Prove that at least n squares must be infected initially to eventually
infect everyone. '

Solution: Consider each side of an infected square that doesn’t face
another infected square. Call these contagious sides. At the end, when
all squares are infected, there are dn contagious sides, just the sides on
the edges of the board. Then look at the ways squares can combine
to infect other squares. In each situation, it is clear that the number
of contagious sides can not increase and will often decrease. Thus,
the number of contagious sides stays the same or decreases with each
generation. Thus a successful initial situation must start with at least
4n contagious sides, so there must be n initially infected squares, and
the n squares down the diagonal will work.

4. Note the equality 2¢ = 42. Do there exist other positive integers m and
n, m # n, such that

n ’ITL?

m o =n

Solution: Rewrite the equality as

1 1
nn :mm,

and consider the function f : (0, c0) — (0, 00),

Inz

flz) =25 =5,
Then

e 1 —Ing
T .

J

1

22
which is positive if z < e and negative if z > e. This implies that f
is strictly increasing on (0,¢) and strictly decreasing on (e, 00). Also



lim, o f(z) = €” = 1, which is equal to f(1). It follows that the
equality from the statement can only hold once, namely for m = 2 < e
and its counterpart n =4 > e.

. Find all possible values of the positive real number o such that the
series

Zcos <7r\/n2 +an + 1)

n=1

converges.

Solution: We have
cos (7r\/n2 +an+ 1) = (—1)"cos <7r\/n2 +an+1-— 7rn)

1
= (—1)"cos <7r s >
vni+an+1+n

Note that

. an + 1 a
lim .

n—oo /n2 d+an+14+n 2’

It follows that in order for the general term of the series to converge to
0, a must be an odd integer.

antl a — i | a
We observe that 0/ S decreases to 5 if a = 1 and increases to 0

fora> 2. This is easily seen by differentiating f(z) = VZ2 + az + 1—2z

forz>0.1fa>2, fi(s) = e — 1> \/%4:0. And, if
13

T+ +1 = F .
a=1, f'(z) = Tra=—1< \/(Iz+2%)2 —1 = 0. This implies that from a,

an+1 g _
moment on, the sequence cos <7r o Ew—— +n> becomes either a decreas‘

ing sequence of positive numbers converging to Zero, or an increasing
sequence of negative numbers converging to zero. The convergence of
the series follows then from the alternating series test.

We conclude that the series converges if and only if a is an odd positive
integer.



6. Slice a regular tetrahedron into 1000 polyhedra of equal volume by the
planes 71,7y, . .., Teg9 parallel to the base. Also, slice the three faces
of the tetrahedron other than the base into polygons of equal area by
the planes 7}, 7, ..., Toqe parallel to the base. What is the number of
planes that belong to both of the sets

{71'1,71'2,... ,7T999} and {71"1,71'[2,... ,7'(';)99}?

Solution: Each such plane, taken separately, cuts a tetrahedron off
the original tetrahedron. Let r;, respectively r; be the similarity ratio
between the tetrahedron cut off by the planes m; respectively nf. If
the planes m; and 7} are listed in order, then the conditions from the
statement translate to

5 1000—i 1000 j
©~ T1000 ' Y 1000 '

for 4,5 = 1,...,999. The planes 7; and 7, coincide if r; = rf, and that

translates to
i/muo-ﬁ_\/loun—j
V1000 1000

This is equivalent to 1000(1000 — )2 = (1000 — 7)®*. We see that
J has to be a multiple of 10, say j = 10k. The equality becomes
(1000 — 7)® = (100 — k). For this to happen, both sides must be sixth
powers. In particular 100 — k£ should be a perfect square. There are
only 9 possibilities, namely

k = 99,96,91,84,75,64,51,36, 19

Each yields one possible value for 7. We conclude that the answer to
the problem is 9.

7. Show that there are infinitely many positive integers n such that the
greatest common divisor of the binomial coefficients

()G () (2s)

is 1.



Solution: Choose n = p;p, where p1 and p, are distinct prime num-

bers. Then
(n) _nn=1)-(n—p +1)
D1 !

which is not divisible by p; because the only factor of p; in the numer-
ator cancels with the p; in the denominator. For the same reason (IZ)

]

is not divisible by p,. But (’11) = p1P2, so the greatest common divisor

of the three binomial coeflicients (71’), (;) and (;) is 1. Hence n has

the desired property. Taking infinitely many pairs of primes we obtain

infinitely many n with the required property.

. Does there exist a positive integer n such that the quadratic equation
(n®—n+1)2? - (n® —n+ Dz—(n"—n+1)=0

has rational solutions?

Solution: Assume for some n, z = p/q is a rational solution, with
ged(p,q) = 1. Then

(n®—n+1)p* — (n® —n+ 1)pg — (n"~n+1)¢* = 0.
Each of the coefficients (n® —n + 1), (n® —n+ 1), (n” = n + 1) is odd,
and of the numbers p and ¢, either both are odd, or one is odd and
the other is even. It follows that the expression on the left is an odd
number, which cannot be equal to 0. Hence the answer to the problem
is negative.
. Let A, B, C'be n x n matrices with the property that
A+ B+ C= -1,
where [, denotes the n x n identity matrix. Show that if the matrix
AB+ AC+ BC+ ABC

is invertible, then the matrix

CB+ CA+ BA + CBA



10.

is also invertible.
Solution: Using the hypothesis of the problem we can write

AB+ AC+ BC+ ABC=1,+ A+ B+ C+ AB+ AC+ BC+ ABC
= (I, + A) (I, + B)(I, + O).

Because this matrix is invertible, each of the matrices I,+ A, I,+ B, and
I+ Cis invertible as well. But then the product (1,4 C)(L,+ B)(I,+ 4)
is also invertible. This product equals

I+ A+ B+ C+ CB+ CA+ BA+ CBA = CB+ CA+ BA+ CBA,

and we are done.

Show that from a group of 2010 people one can select one hundred
5-member teams in such a way that the five members of each team
have the same birthday. (Each person can be a member of at most one
team.)

Solution I: The solution works the same regardless of whether we take
into account leap years or not. The solution we describe below takes
into account leap years.

Because 2010 > 4-366 = 1464, by the pigeonhole principle there will be
five people in our group with the same birthday. Put them on the first
team. There are 2005 people left, and because this number is again
greater than 1464 we can select a second team of five with the same
birthday. If we repeat the selection k& times, there will be 2010 — 5k
people left, and as long as 2010—5k > 1464 we can continue the process.
This means that we can select at least 110 teams and the problem is
solved.

Solution II: (By finite induction on the number k of 5-member, same-
birthday teams.) Since 2010 > 4 - 366 = 1464, it is clear that k = 1
team, all with the same birthday, can be formed (pigeonhole principle).
Assume that & = 99 such teams can be formed. The number of mem-
bers remaining is then 2010 —5-99 = 1515, which remains greater than
1464, so the-100th team can be formed as well.
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Calculators of any sort are allowed, although complete justifications are expected, not just the
statement of an answer. Use of cell phones or computers is not permitted. Partial credit will be
given for progress toward a solution or the answer to part of a question.

1. Smallinomial The cubic equation az3 + bz? + cx + d = 0 has non-zero integer coefficients
and distinct integer solutions. Find the smallest possible value for |a| + |b| + |c| + |d].

2. The Traveling Ant An ant walking on the plane departs from (0, 0), traveling between
lattice points. From any given lattice point (z,y), the ant randomly decides to travel to
(x4 1,y),(x,y+ 1), or (x+ 1,y + 1). After some time, the ant arrives at (4,4). What is
the probability that the ant stopped by (2,2) along the way?

3. Fickle Factorial Find all integers n, 2 < n < 4010, such that there exist integers x and y
Br 3
satisfying 20111 = -,
n!

4. Determine It Let A be a 2011 x 2011 matrix whose 4, j entry is (—1)**7, and let I be the
2011 x 2011 identity matrix. Let B(z) = A + Iz, for € R. Compute the determinant of
B(x).

5. Rhomboctagon ABCD is a rhombus with side length 13. Equilateral triangles are erected
on all four sides, resulting in the concave octagon APBQCRDS. Given PQ = 24, compute
the area of the octagon.
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SOLUTIONS

1. Smallinomial The cubic equation az® + bz? + cx + d = 0 has non-zero integer coefficients
and distinct integer solutions. Find the smallest possible value for |a| + |b| + |c| + |d].

Solution. The smallest possible value is 6.

Let f(z) = az® + bz? + cx + d, and set S = |a| + |b] + |c| + |d|. S = 6 is satisfied with
flz) = (z+1)(z—1)(z - 2) = 2° — 22% — £ + 2. We need to show that the sum cannot be
made smaller with some different polynomial f(x).

Since f(z) is required to have non-zero coefficients, S > 4. Furthermore, since f(z) is re-
quired to have distinct integer solutions, |d| > 2, hence S > 5. All that remains is to show
that no polynomial of the form 3 4= 2% 4 z 4- 2 has distinct integer-valued zeroes.

To show this, first note that the zeroes would need to be 1,—1, and one of {-2,2}. (In
order to get |d| = 2.) But 3 £ 2% £ 2 £+ 2 is odd for £ = %1, so these cannot be zeroes. O



4. Determine It Let A be a 2011 x 2011 matrix whose %, j entry is (—1)**7, and let Iy, be
the 2011 x 2011 identity matrix. Let B(z) = A + Iz, for z € R. Compute the determinant
of B(z).

Solution. Originally we have

z+1 -1  +1 -1 - 41
“1 z+1 -1 41 ... -1
+1 -1 z+1 -1 - +1
B@l=| -1 41 -1 z+1 . +1
+1 -1 41 =1 e o4l

Adding rows does not change the determinant, so add row k+1 to row k, for k = 1,2,...2010:

z « 0 0 --- 0 0
0O « =z 0 --- 0 0
0 0 =z =z 0 0
|B(z)| =] O 0 0 = 0 0
o o0 o0 0 - =z z
+1 -1 41 -1 .+ =1 z+1

Subtracting columns does not change the determinant, so subtract row k from row k£ + 1,
for k=1,2...,2010:

z 0 0 O 0 0
0 = 0 O 0 0
0 0 =z O 0 0
B(z)]=| 0 0 0 = 0 0
0 0 0 0 - @ 0
+1 -2 43 —4 -+ —2010 z+ 2011
=|2*%(z + 2011)

Source: International Math Competition for University Students (9th Edition)



[PQRS] = 24(12v/3 + 5) = 288+/5 + 120. We also have [BPY] = 30, so now we need to
compute [APZ].

132 132 124345 12—-5v3 11943 —120
A Z = — .' = — . — i
[APZ] i cos Bsin 8 > = 5 =

Putting it all together:

[APBQCRDS] = [PQRS] — 4 - [BPY] — 4. [APZ]

= (288V/3 +120) — 4-30 — 4 (1_19_\/%_129)
— 60 + 4572‘/5

w/2
6. Lntegral Compute the exact value of / Incos z dz.
0
m/2
Solution. Let [ = / Incoszdz, and note that if we substitute u = 7 — z we get
0

/2 . T
I= / Insin z dz. By symmetry, 21 = / Insin z dz, from which we get
0 0

2[:/ Insin z dx
0

T ‘ T
—/0 1nsm<2~§) dz

4 . T\
_/0 In (28111-2—0055) dz

=/ 1n2+lnsing+1ncoszdx
0

2
/2
=7ln2+2 / Insinu + Incosu du
0
=7mln2+ 41,
. In2
from which we get | I = e (]

2

(=}



£10000_{

Since f(0) = 0, we get C = —hl’(()})gg). Solving f(t) = 1, we get t = 55— So yes, the

caterpillar will reach the truck, but not until long after the earth crashes into the sun. [J

9. Rectangles Galore Let S be an infinite set of rectangles that have one corner at (0,0) and
their opposite corner at a point with positive integer coordinates. Show that there must
exist rectangles A, B € S for which the interior of A is contained in the interior of B.

Solution. Suppose no pair of boxes exists. For a box A € §, let P(A) be the corner of A
opposite the origin. Suppose box A is the box for which P(A) has a minimal z-coordinate.
Then the y-coordinate of P(A) must be maximal over S, and from here we again build a
chain of boxes A, Ay, A, ... such that the z-coordinates of P(A,) are strictly increasing,
and the y-coordinates are strictly decreasing, which contradicts the condition that |\S| = co.

**Note: This problem was intended to use rectangles whose sides are parallel to the z and y-
axes. This was not stated in the given problem, so there does exist an infinite set of rectangles
for which the interior of no rectangle is contained in the interior of any other rectangle. For
example, consider the set of rectangles whose corners are at (0,0), (n,1), (n—1,n+1),(—1,n)
for all integers n > 0.

Source: Brazilian Math Olympiad

10. Number Puzzle The triangular lattice below contains 8 rows and 36 cells. Consider
all ways in which the integers 1,2,...,6 can be filled into the lattice so that each integer
appears exactly 6 times. Find the largest n for which the following statement is true: There
must exist a straight line (parallel to a side of the triangle) that contains at least n different
integers.

Solution. The largest n is n = 3. We will first show n is at least 3 for any arrangement,
then we will provide an example to show that n = 3 is achievable.

=i



