
The Twenty-First Annual Konhauser Problemfest

Carleton College, February 23, 2013

Problems set by George Gilbert, Texas Christian University

This contest is held annually in memory of Professor Joseph Konhauser (1924-1992) of
Macalester College, who posted nearly 700 Problems of the Week at Macalester over a 25-year
period. Joe died in February of 1992, and the contest was started the following year.

SUMMARY OF INSTRUCTIONS: (You will have received somewhat more detailed
instructions before the contest.) Each team must hand in all work to be graded at the same
time (after three hours). Each problem must be written ON A SEPARATE PAGE (or pages)
and YOUR TEAM NAME MUST BE WRITTEN AT THE TOP OF EVERY PAGE. Only
one version of each problem will be graded for each team, so do not submit multiple versions.
Calculators of any sort are allowed, but answers should be exact, and justifications and/or
explanations are expected for all problems. All ten problems will be weighted equally; partial
credit will be given for substantial progress toward a solution. Solutions that are especially
di�cult to follow or hard to read may not get full credit, even if they turn out to be correct.
Of course, you may not get information about anything related to these problems from
anyone or anything except:
a) You are encouraged to work with your team members and
b) If a problem seems incorrect or unclear, you may ask supervising faculty.

1. An Explicit Fair Division

Consider the points A = (4, 0), B = (0, 3), C = (0, 0) in the plane. Find all pairs of
points P and Q on 4ABC that divide the perimeter of the triangle in half and such that
PQ divides the area of the triangle in half.

2. Is That All There Is?

Let S be a nonempty set of positive integers. Suppose that for every positive integer n,
if any one of the three positive integers n, 2n+ 9, and 2n+ 25 is in S, then all three are in
S. Does it follow that S is the set of all positive integers?

3. A Creepy, Decreasing Sequence

Let a0 be a positive rational number. For every integer n � 0 , let kn be the smallest

positive integer for which an �
1

kn
> 0, and define an+1 = an �

1

kn
. Must

1

an
be an integer

for infinitely many n ?

4. Missing the First Derivative

For what real numbers a other than 0 and 1 does there exist a polynomial p(x) (with
real coe�cients) of degree 5 such that

p(0) = p(1) = p(a) = 0 ,

p

00(0) = p

00(1) = p

00(a) = 0 ?
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5. Losing One’s Marbles?

Players A and B play a game in which they take turns removing marbles from a bowl
that begins with n marbles. On his turn, player A must remove 1 or 2 marbles; on her turn,
player B must remove 2011, 2012, or 2013 marbles. The winner is the last player who is able
to remove (a legal number of) marbles. Assuming that both players play optimally, which
of the following three sets is/are infinite?

SA = {n| Player A will win regardless of who moves first}

SB = {n| Player B will win regardless of who moves first}

SC = {n| The winner depends on who moves first}

6. Seeding Integer Roots

Let p0(x) = x

2+ ax+ b and, for all positive integers n, let pn(x) = pn�1(x)+x+2 . Find
all pairs of integers (a, b) such that the roots of pn(x) are integers for every integer n � 0 .

7. Two Possible Endings

A standard fair die (with six faces numbered 1, 2, 3, 4, 5, 6) is rolled until either a 6 appears
or two consecutive 1’s appear. Find the probability that the process stops after exactly n

rolls. (Express your answer in closed form.)

8. Does Dimension Really Matter?

Let Gn denote the set of all invertible n⇥n matrices with real entries. Is there a bijection
(one-to-one and onto function) f : G2 ! G3 such that f(AB) = f(A)f(B) for all A and B

in G2 ?

9. A Fine Line Between Convergence and Divergence

Let
�
an

�
n�1

be a sequence of positive numbers that have limit 0 . Must there exist a

sequence (bn) of positive numbers such that
1X

n=1

bn diverges and
1X

n=1

anbn converges?

10. Pushing the envelope

Let d be a positive integer, and let Sd be the set of all the polynomials p(x) of degree
at most d such that all of p(0), p0(0), p00(0), . . . are nonnegative integers. Prove that there
exists a polynomial qd(x) in Sd such that the following are equivalent for all p(x) in Sd :

(i) p(1/n)  qd(1/n) for all positive integers n ;

(ii) p(1/n)n < e for all positive integers n .
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The Twenty-First Annual Konhauser Problemfest - Solutions

Carleton College, February 23, 2013

1. An Explicit Fair Division

Consider the points A = (4, 0) , B = (0, 3) , C = (0, 0) in the plane. Find all pairs of
points P and Q on 4ABC that divide the perimeter of the triangle in half and such that
PQ divides the area of the triangle in half.

Solution. We’ll see that there is only one such pair of points P,Q (up to order). Note
that neither of the points can be at a vertex, because then the other point would have to
be at the midpoint of the opposite side (for the area to be divided equally), and then the
perimeter isn’t divided equally. Let the lengths of the sides that P and Q are on be x and
y , and let the distances from P and Q to the vertex V (one of A, B, C) where those sides
meet be p and q , respectively. From the condition on the perimeter, we get p+ q = 6 . The
area of a triangle is half the product of two sides and the sine of their included angle, so the
area of the whole triangle is (xy sin ✓)/2 , where ✓ is the angle at V . The condition on the
area gives us (pq sin ✓)/2 = (xy sin ✓)/4 , so 2pq = xy .

Eliminating q yields
2p2 � 12p+ xy = 0,

with solutions
p = 3±

p
9� xy/2.

Thus, there is no loss of generality in assuming

p = 3 +
p

9� xy/2, q = 3�
p
9� xy/2.

If {x, y} = {4, 5}, then 9�xy/2 < 0, an impossibility. If {x, y} = {3, 4}, then p = 3+
p
3 > 4,

also an impossibility. Thus, {x, y} = {3, 5}, p = 3 +
p

3/2, and q = 3 �
p

3/2. Now we
know that the vertex V is B, and that P is on BA (because p > 3) while Q is on BC. Then
we see from the distances p and q that Q = (0,

p
3/2) , while

P = (0, 3) + (3 +
p

3/2) (4/5,�3/5) =

 
12 + 2

p
6

5
,

12� 3
p
6

10

!
.

Note. This solution is more e�cient than setting up separate calculations for the three
possible pairs of sides that P and Q might lie on, but of course that can be done also.

2. Is That All There Is?

Let S be a nonempty set of positive integers. Suppose that for any positive integer n, if
any one of the three positive integers n, 2n+ 9, and 2n+ 25 is in S, then all three are in S.
Does it follow that S is the set of all positive integers?

Solution 1. Yes. Because S is nonempty, it is enough to show that n is in S if and only
if n+1 is in S. Define f(x) = 2x+9. Then f(k)� f(j) = 2(k� j), so that for the three-fold
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composition f

(3), we have f (3)(n+1)�f

(3)(n) = 8. Therefore, 2·f (3)(n+1)+9 = 2·f (3)(n)+25.
If this integer is in S, so are n and n+ 1. If not, neither is in S.

Solution 2. Because

2(2n+ 9) + 9 = 2(2n+ 1) + 25 (⇤),

n is in S i↵ (if and only if) 2n+9 is in S, i↵ both sides of (⇤) are in S, i↵ 2n+1 is in S. Then
because 2n+9 = 2(n+4)+1, n is in S i↵ n+4 is in S. Then because (2n+9)+4 = 2(n+2)+9,
n is in S i↵ n+ 2 is in S. Finally, because (2n+ 9) + 2 = 2(n+ 1) + 9, n is in S i↵ n+ 1 is
in S, and because S is nonempty, we are done.

Note. The problem wouldn’t really change if we replaced “positive integer(s)” by “inte-
ger(s)” throughout.

3. A Creepy, Decreasing Sequence

Let a0 be a positive rational number. For every integer n � 0 , let k

n

be the smallest

positive integer for which a

n

� 1

k

n

> 0, and define a

n+1 = a

n

� 1

k

n

. Must
1

a

n

be an integer

for infinitely many n ?

Solution. Yes; in fact, once 1/a
n

is an integer, so are all 1/a
m

for m > n.
To begin, note that if a0 > 1 , then k0 = 1, a1 = a0 � 1 , and we keep subtracting 1 from

a

n

until 0 < a

n

 1 . This takes finitely many steps, so we might as well assume 0 < a0  1 .
Now if 1/a0 happens to be an integer m , then k0 = m+ 1 , and

a1 =
1

m

� 1

m+ 1
=

1

m(m+ 1)

is again the reciprocal of an integer, as claimed. Otherwise, write a0 in lowest terms as c0/d0 ;
we know that 1 < c0 < d0. Divide d0 by c0 with remainder: d0 = qc0 + r ; we know that
the remainder is positive (else a0 = 1/q), and because r < c0 we have qc0 < d0 < (q + 1)c0 ,
hence 1/(q + 1) < a0 < 1/q and so k0 = q + 1. Then

a1 = a0 �
1

q + 1
=

c0 � r

d0(q + 1)
.

Thus a1 is again a positive rational between 0 and 1, with a smaller numerator than a0.
Because the numerator must keep decreasing, it will reach 1 in finitely many steps, and we
are done.

4. Missing the First Derivative

For what real numbers a other than 0 and 1 does there exist a polynomial p(x) (with
real coe�cients) of degree 5 such that

p(0) = p(1) = p(a) = 0 ,

p

00(0) = p

00(1) = p

00(a) = 0 ?
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Solution. For a = �1, 1/2, 2. Because p(x) has degree 5, p00(x) has degree 3, so we know
all its roots are 0, 1, and a . After multiplying p(x) by a constant, we may assume that

p

00(x) = x(x� 1)(x� a) = x

3 � (a+ 1)x2 + ax .

Integrating twice,

p(x) =
1

20
x

5 � a+ 1

12
x

4 +
a

6
x

3 + Cx+D

for some constants C and D. From p(0) = 0 , we get D = 0 . From p(1) = 0 , we get
1/20� (a+ 1)/12 + a/6 + C = 0 or C = �a/12 + 1/30 . Finally, p(a) = 0 yields

a

5

20
� (a+ 1)a4

12
+

a

4

6
+ Ca = 0 .

Substituting in our expression for C, dividing by �a, and simplifying leads to

a

4

30
� a

3

12
+

a

12
� 1

30
= 0 .

We see that there is a factor a2 � 1, and we then get

1

60
(a2 � 1)(2a� 1)(a� 2) = 0 .

Discarding the root a = 1, we see that a can be �1, 1/2, or 2 , as claimed.

Note. The values for a are precisely the three values for which 0, 1, and a , in some
order, are equally spaced on the number line. It would be interesting to have a solution that
shows directly that this is necessary and su�cient for the existence of p(x) .

5. Losing One’s Marbles?

Players A and B play a game in which they take turns removing marbles from a bowl
that begins with n marbles. On his turn, player A must remove 1 or 2 marbles; on her turn,
player B must remove 2011, 2012, or 2013 marbles. The winner is the last player who is able
to remove (a legal number of) marbles. Assuming that both players play optimally, which
of the following three sets is/are infinite?

S

A

= {n| Player A will win regardless of who moves first}
S

B

= {n| Player B will win regardless of who moves first}
S

C

= {n| The winner depends on who moves first}

Solution 1. We’ll show that only S

B

is infinite. First note that 2013 is in S

B

, because
if B moves first she can take all the marbles, while if A moves first and takes i marbles, B
wins by taking 2013� i marbles. Similarly, if n is in S

B

, then n+ 2013 is in S

B

, because B
can always arrange to get from n+2013 to n marbles in either one or two moves. Therefore,
S

B

contains all positive multiples of 2013 and is thus infinite.
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Now note that if n is in S

B

, then B wins if there are n + 1 marbles and she moves
second, because if A takes one marble B has a winning position, and if A takes two marbles
it will be as if he started with n marbles and took one; by the assumption that n is in
S

B

, B has a strategy to deal with that move and win. On the other hand, if B wins when
there are k marbles and she moves second, then k + 2013 is in S

B

, because B can either
take 2013 marbles if it is her move, or respond to A taking i marbles by taking 2013 � i .
In particular, for k = n + 1, this shows that if n is in S

B

, then so is n + 2014 ; note that
n+2014 = n+1 (mod 2013) . Because we know that all multiples of 2013 are in S

B

, we now
see by induction that all su�ciently large numbers that are congruent to any of the possible
remainders 1, 2, . . . (mod 2013) are in S

B

, and we are done.

Solution 2. (Izabella  Laba). Because 2013 and 2014 are relatively prime, every su�-
ciently large n can be written in the form n = 2013j + 2014k where j and k are positive
integers. Suppose it is A’s move with such a number n of marbles in the bowl. Here is a
winning strategy for B: In the first k rounds, if A chooses i, B responds by choosing 2014� i .
In the following j rounds, if A chooses i, B chooses 2013� i . Thus, B wins if A moves first.
On the other hand, if B moves first she can still win by first taking 2011 marbles and then
following the same strategy with n replaced by n� 2011 to respond to A’s moves, as long as
n � 2011 is large enough. Thus for su�ciently large n, B will win regardless of who moves
first, and so only S

B

is infinite.

6. Seeding Integer Roots

Let p0(x) = x

2+ ax+ b and, for all positive integers n, let p
n

(x) = p

n�1(x)+x+2 . Find
all pairs of integers (a, b) such that the roots of p

n

(x) are integers for every integer n � 0 .

Solution 1. By direct computation,

p

n

(x) = x

2 + (n+ a)x+ (2n+ b) has roots x1,2 =
�n� a±

p
(n+ a)2 � 4(2n+ b)

2
.

The discriminant (n+ a)2 � 4(2n+ b) has the same parity (even or odd) as �n� a, so these
roots are integers if and only if the discriminant is a perfect square, and we have to find the
(a, b) such that this is true for all n . Now

(n+ a)2 � 4(2n+ b) = n

2 + (2a� 8)n+ (a2 � 4b) = (n+ a� 4)2 � (a� 4)2 + (a2 � 4b)

= (n+ a� 4)2 + (8a� 4b� 16) .

This is clearly a perfect square (for any n) if 8a � 4b � 16 = 0 . On the other hand,
if 8a � 4b � 16 6= 0 , then for large enough n the absolute value of the di↵erence between
(n+ a� 4)2 and any other perfect square will be greater than |8a� 4b� 16| , and then the
discriminant cannot be a square for such n. So the desired pairs (a, b) are the ones for which
8a� 4b� 16 = 0 , that is, b = 2a� 4 .

Solution 2. We’ll show that the set consists of all pairs of integers for which 2a� b = 4 .
Observe that if p

n

(x) = x

2 + a

n

x+ b

n

, then

2a
n+1 � b

n+1 = 2(a
n

+ 1)� (b
n

+ 2) = 2a
n

� b

n

.
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Thus 2a
n

� b

n

is constant for the sequence of polynomials. It follows that if 2a� b = 4 , then
each p

n

(x) has the form x

2 + a

n

x + (2a
n

� 4) ; this polynomial has roots �2 and 2 � a

n

,
which are integers, as desired.

We now show that the condition 2a� b = 4 is also necessary. For p0(x) and p1(x) to have
integral roots, their discriminants, a2 � 4b and (a+ 1)2 � 4(b+ 2) , must be perfect squares.
Either a or a + 1 is odd, so the corresponding discriminant is odd and 4b or 4(b + 2) is the
di↵erence of odd squares, hence a multiple of 8 . Therefore, b is even. For some n, b+2n = 2p
for some odd prime p. There is no loss of generality in assuming b = 2p, p0(x) = x

2+ax+2p.
Then the discriminant a2�8p is a perfect square which cannot be zero, so we have a2�8p = d

2

for some positive integer d, which yields (a � d)(a + d) = 8p . Because a and d have the
same parity, either (i) a � d = 4, a + d = 2p or (ii) a � d = 2, a + d = 4p. In case (i),
a = p + 2, 2a � b = 4 , and we are done. In case (ii), a = 2p + 1. But then p1(x) has
discriminant

(2p+ 2)2 � 4(2p+ 2) = 4p2 � 4.

However, the only perfect squares di↵ering by 4 are 0 and 4, which would imply p = 1, a
contradiction.

7. Two Possible Endings

A standard fair die (with six faces numbered 1, 2, 3, 4, 5, 6) is rolled until either a 6 appears
or two consecutive 1’s appear. Find the probability that the process stops after exactly n

rolls. (Express your answer in closed form.)

Solution 1. The probability, for n � 1, is

1

4

 
1 +

p
2

3

!
n

+
1

4

 
1�

p
2

3

!
n

.

Let p
n

denote the probability that the process stops on or before n rolls and let q
n

denote
the probability that the process has not stopped after n rolls and the nth roll is a 1 . We
have p0 = q0 = 0 and p1 = q1 = 1/6 . For n � 1 ,

p

n

= p

n�1 +
1

6
(1� p

n�1) +
1

6
q

n�1 =
1

6
+

5

6
p

n�1 +
1

6
q

n�1 ,

q

n

=
1

6
(1� p

n�1 � q

n�1) .

Thus

p

n+1 +
1

6
p

n

=
7

36
+

5

6
p

n

+
5

36
p

n�1 +
1

6

✓
q

n

+
1

6
q

n�1

◆

=
7

36
+

5

6
p

n

+
5

36
p

n�1 +
1

36
(1� p

n�1)

=
2

9
+

5

6
p

n

+
1

9
p

n�1 ,

5



or
9p

n+1 � 6p
n

� p

n�1 = 2 .

The characteristic equation for this di↵erence equation has roots (1±
p
2)/3, so the homoge-

nous solution is

A+

 
1 +

p
2

3

!
n

+ A�

 
1�

p
2

3

!
n

.

Noting that 1 is a particular solution, we have

p

n

= 1 + A+

 
1 +

p
2

3

!
n

+ A�

 
1�

p
2

3

!
n

.

From p0 and p1, we find

A+ =
�4� 3

p
2

8
, A� =

�4 + 3
p
2

8
.

The probability of stopping on the nth roll is p
n

� p

n�1 , which simplifies to

p

n

� p

n�1 =
1

4

 
1 +

p
2

3

!
n

+
1

4

 
1�

p
2

3

!
n

.

Solution 2. There are only three “states” that the process can be in after any number
of rolls: It can have just stopped, it can be in the “starting” state (if the previous roll was
not a 1 or a 6), or it can be in the “one” state, where the previous roll was a 1 . Let the
probabilities that the process stops after exactly n more rolls be P

n

for the starting state
(this is what we want to compute) and Q

n

for the “one” state. Note that P1 = 1/6 and
Q1 = 2/6 = 1/3 (in the “one” state, rolling either a 1 or a 6 stops the process). Also, when
we roll once from the starting state we get back to the starting state with probability 2/3
and we get to the “one” state with probability 1/6. Therefore, for n > 1,

P

n

=
2

3
P

n�1 +
1

6
Q

n�1 ,

and similarly,

Q

n

=
2

3
P

n�1 .

We can rewrite this pair of recurrence relations as the matrix equation


P

n

Q

n

�
=


2/3 1/6
2/3 0

� 
P

n�1

Q

n�1

�
,

and using the initial conditions we conclude that


P

n

Q

n

�
=


2/3 1/6
2/3 0

�
n�1 

1/6
1/3

�
=

1

6n


4 1
4 0

�
n�1 

1
2

�
.
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To compute the matrix power, we can diagonalize. By direct computation, the eigenvalues

of


4 1
4 0

�
are � = 2± 2

p
2 , with corresponding eigenvectors


1

±2
p
2� 2

�
, so we have


4 1
4 0

�
=


1 1

2
p
2� 2 �2

p
2� 2

� 
2 + 2

p
2 0

0 2� 2
p
2

� 
1 1

2
p
2� 2 �2

p
2� 2

��1

and


4 1
4 0

�
n�1

=


1 1

2
p
2� 2 �2

p
2� 2

� 
(2 + 2

p
2)n�1 0

0 (2� 2
p
2)n�1

� 
1 1

2
p
2� 2 �2

p
2� 2

��1

.

Inserting this into our expression for


P

n

Q

n

�
, and using the matrix inverse


1 1

2
p
2� 2 �2

p
2� 2

��1

=
1

�4
p
2


�2

p
2� 2 �1

�2
p
2 + 2 1

�
,

we end up with

P

n

=
1

4
p
2 · 6n

[(2 + 2
p
2)n�1(4 + 2

p
2) + (2� 2

p
2)n�1(�4 + 2

p
2)]

=
1

4

 
1 +

p
2

3

!
n

+
1

4

 
1�

p
2

3

!
n

.

8. Does Dimension Really Matter?

Let G
n

denote the set of all invertible n⇥n matrices with real entries. Is there a bijection
(one-to-one and onto function) f : G2 ! G3 such that f(AB) = f(A)f(B) for all A and B

in G2 ?

Solution 1. Suppose there were such a bijection f . Note that

f(I2) = f(I2I2) = f(I2)f(I2) , so f(I2) = I3 ,

where I

n

denotes the n⇥ n identity matrix. Now consider the three particular matrices

P =

2

4
1 0 0
0 �1 0
0 0 �1

3

5
, Q =

2

4
�1 0 0
0 1 0
0 0 �1

3

5
, R =

2

4
�1 0 0
0 �1 0
0 0 1

3

5 in G3 .

Note that PQ = R,P

2 = Q

2 = R

2 = I3 . Therefore, if we put A = f

�1(P ), B = f

�1(Q), C =
f

�1(R) , we must also have AB = C , because f(AB) = f(A)f(B) = PQ = R = f(C) and
f is one-to-one, and similarly A

2 = B

2 = C

2 = I2 . In addition, because none of P,Q,R

commute with all the matrices in G3 , none of A,B,C can commute with all the matrices in
G2 . In particular, none of A,B,C can be I2 or �I2 .
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Consider the matrix equation X

2 = I2. If X =


x1 x2

x3 x4

�
is a solution, then

x

2
1 + x2x3 = x

2
4 + x2x3 = 1 , x2(x1 + x4) = x3(x1 + x4) = 0 .

Thus, either x1 + x4 = 0 or x2 = x3 = 0 . In the latter case, the matrix is diagonal with
diagonal entries ±1 . In the former case, the trace of X is zero, so the eigenvalues sum to
zero, and because the only possible eigenvalues are ±1 , there must be one of each. We can
conclude that if X2 = I2 , then either det(X) = �1 or X = I2 or X = �I2 . But that
means that our matrices A,B,C must all have determinant �1 , which contradicts AB = C .
Therefore, there can be no such bijection.

Solution 2. There is no such bijection. If I
n

is the identity in G

n

, then f(A) = f(AI2) =
f(A)f(I2), so that f(I2) = I3. The eight elements

2

4
±1 0 0
0 ±1 0
0 0 ±1

3

5

all have square I3 and commute with each other. The same must be true (with the squares
being I2) of the eight 2⇥ 2 matrices

S = f

�1

0

@

2

4
±1 0 0
0 ±1 0
0 0 ±1

3

5

1

A
.

The only eigenvalues of elements of S are ±1. If a matrix in S has 1 as a double eigenvalue,
it is similar to 

1 x

0 1

�
.

Its square is I2 if and only if x = 0, which means the original matrix is I2. Similarly, if �1
is a double eigenvalue of a matrix in S, it is �I2. Choose A 2 S other than ±I2. It must be
diagonalizable with eigenvalues ±1. If

P

�1
AP =


1 0
0 �1

�
,

then the eight matrices in P

�1
SP commute and have square I2. If


w x

y z

�

commutes with 
1 0
0 �1

�
,
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then x = y = 0. If its square is I2, then w = ±1, z = ±1. Thus, P�1
SP contains at most

four matrices, not eight as needed.

Note. The end of the second solution can be shortened by using the theorem that
commuting, diagonalizable matrices are simultaneously diagonalizable.

9. A Fine Line Between Convergence and Divergence

Let
�
a

n

�
n�1

be a sequence of positive numbers that have limit 0 . Must there exist a

sequence (b
n

) of positive numbers such that
1X

n=1

b

n

diverges and
1X

n=1

a

n

b

n

converges?

Solution 1. There must be such a sequence. Because (a
n

)
n�1 converges to 0, it must be

bounded above by some constant c. Furthermore, each of the sets

S

k

= {n
��
c/2k+1

< a

n

 c/2k}, k = 0, 1, 2, . . . ,

is finite. Letting |S
k

| denote the cardinality of S
k

, define b

n

= 1/|S
k

| , where n 2 S

k

. Then
for S

k

nonempty, X

n2Sk

b

n

= 1,
X

n2Sk

a

n

b

n

 c/2k.

Therefore,
1X

n=1

b

n

diverges, while
1X

n=1

a

n

b

n


1X

k=0

c/2k = 2c ,

showing that
1X

n=1

a

n

b

n

converges.

Solution 2. Here is another construction of such a sequence. Because lim
n!1

a

n

= 0 , we

can find subscripts n1 < n2 < n3 < . . . such that

a

n1 <

1

2
, a

n2 <

1

4
, . . . , a

nk
<

1

2k
, . . . .

Now define

b

n

= 1 if n = n

k

for some k ,

b

n

=
1

n

2
otherwise.

Then
1X

n=1

b

n

diverges because infinitely many of the terms are 1 , while
1X

n=1

a

n

b

n

converges

by comparison to
1X

k=1

1

2k
+

1X

n=1

a

n

n

2
,

where the second of the series added together converges by limit comparison to
1X

n=1

1

n

2
.
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10. Pushing the envelope

Let d be a positive integer, and let S

d

be the set of all the polynomials p(x) of degree
at most d such that all of p(0), p0(0), p00(0), . . . are nonnegative integers. Prove that there
exists a polynomial q

d

(x) in S

d

such that the following are equivalent for all p(x) in S

d

:

(i) p(1/n)  q

d

(1/n) for all positive integers n ;

(ii) p(1/n)n < e for all positive integers n .

Solution. Note that if there exists such a polynomial q
d

(x) , it must be unique, and it

will have the property that q

d

(1/n)n < e , and so q

d

(1/n) < e

1/n , for all n . This suggests

that q
d

(x) might be the degree d Taylor polynomial (near x = 0) for ex , and in fact we will
show that

q

d

(x) =
dX

k=0

x

k

k!

satisfies the conditions of the problem. First observe that the set S
d

consists exactly of all

polynomials of the form
dP

k=0

a

k

k!
x

k , where each a

k

is a nonnegative integer; in particular, our

polynomial q
d

(x) really is in S

d

. It is easy to show (i) implies (ii): if p(1/n)  q

d

(1/n), then

p(1/n)n  q

d

(1/n)n =

 
dX

k=0

1/(nk

k!)

!
n

<

 1X

k=0

1/(nk

k!)

!
n

=
�
e

1/n
�
n

= e .

To show that (ii) implies (i), assume (ii), and suppose that p(1/n) > q

d

(1/n) for some
positive integer n. Note that both p(1/n) and q

d

(1/n) can be expressed as fractions with
denominator nd

d! . Therefore, p(1/n) � q

d

(1/n) + 1/(nd

d!) . On the other hand,

1X

k=d+1

1/(nk

k!) <
1X

k=d+1

1/(nk(d+ 1)!(d+ 2)k�d�1) =
1

n

d+1(d+ 1)!
· 1

1� 1
n(d+2)

=
1

n

d

d!
· 1

n(d+ 1)� d+1
d+2

<

1

n

d

d!
· 1
d

 1

n

d

d!
.

Consequently, p(1/n) > q

d

(1/n) +
1P

k=d+1
1/(nk

k!) = e

1/n and p(1/n)n > e , a contradiction;

we are done.
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